Audio Interchange File Format: "AIFF" version 1.3

Audio Interchange File Format: "AIFF"

A Sandard for Sampled Sound Files
Version 1.3
Apple Computer, Inc.

Modification History

Verson 1.l January 21, 1988 Origind verson.

Verson 1.2 June 17, 1988 Corrected typographica error in illustration on
page 4.

Verson 1.3 January 4, 1989 Apple Il modifications. Changed Applell file

type from OxCB to O0xD8 on page 4. Defined
convention for using applicationSgnature fidd

page 15.

The Audio Interchange File Format (Audio IFF) provides a standard for storing sampled sounds. The
format is quite flexible, alowing for the storage of monaura or multichanne sampled sounds at avariety
of sample rates and sample widths.

Audio IFF conformsto the "EA IFF 85" Standard for Interchange Format Files developed by
Electronic Arts.

Audio IFF is primarily an inter change format, athough application designers should find it flexible
enough to use as a data storage format aswell. If an application does choose to use a different storage
format, it should be able to convert to and from the format defined in this document. Thiswill facilitate
the sharing of sound data between agpplications.

Audio IFF isthe result of severd meetings held with music developers over a period of ten monthsin
1987-88. Apple Computer greetly appreciates the comments and cooperation provided by dl
developers who helped define this standard.

Another "EA IFF 85" sound storage format is"8SVX" | FF 8-bit Sampled Voice, by Electronic Arts.
"8SV X", which handles 8-bit monaurad samples, isintended mainly for storing sound for playback on
persond computers. Audio IFF isintended for use with alarger variety of computers, sampled sound
instruments, sound software gpplications, and high fiddity recording devices.

Apple Computer, Inc. January 4, 1989 1

Data types

Audio Interchange File Format: "AIFF" version 1.3

A C-like language will be used to describe data structures in this document. The datatypes used are

listed below:

char .

unsi gned char:

short:

unsi gned short:

| ong:

unsi gned | ong:

ext ended:

pstring:

OSType:

Constants

8 bits, signed. A char can contain more than just ASCII characters. It can
contain any number from -128 to 127 (inclusive).

8 hits, unsggned. Contains any number from zero to 255 (inclusive).

16 bits, gned. Contains any number from -32,768 to 32,767 (inclusive).

16 hits, unsgned. Contains any number from zero to 65,535 (inclusive).

32 hits, sgned. Contains any number from -2,147,483,648 to 2,147,483,647
(indusive).

32 bits, unsigned. Contains any number from zero to 4,294,967,295
(inclusive).

80 bit IEEE Standard 754 floating point number (Standard Apple Numeric
Environment [SANE] data type Extended).

Pascal-style string, a one byte count followed by text bytes. The total number
of bytesin this data type should be even. A pad byte can be added at the
end of the text to accomplish this. This pad byte is not reflected in the count.
32 bits, the concatenation of four printable ASCII character intherange''
(SP, 0x20) through '~' (OX7E). Spaces (0x20) cannot precede printing
characters; trailing spaces are dlowed. Control characters are forbidden.

32 hits. A concatenation of four characters, as defined in Inside Macintosh,
vol 11.

Decimd vaues arereferred to asadtring of digits, for example 123, 0, 100 are al decima numbers,
Hexadecimal values are preceded by aOx - e.g. 0x0A12, O0x1, 0x64.

Data Organization

All dataiis stored in Motorola 68000 format. Datais organized asfollows:

7 6 5 4 3 2 1

Q

char [msb

Isb |

151413121110 9 87 6 5 4 3 2 1

short [msh

byte 0

0
| byte 1 Ish]

151413 121110 9 8 7 6 5 4 3 2 1 O

msb

byte 0

byte 1

long

byte 2

byte 3 Isb

Apple Computer, Inc.

January 4, 1989 2

Audio Interchange File Format: "AIFF" version 1.3

Referring to Audio IFF

The officid name for this sandard is Audio Interchange File Format. If an gpplication program needs
to present the name of thisformat to auser, such asina"Save as..." didog box, the name can be

abbreviated to Audio |FF.

Apple Computer, Inc. January 4, 1989 3

Audio Interchange File Format: "AIFF" version 1.3

File Structure

The"EA IFF 85" Sandard for Interchange Format Files definesan overadl structure for storing
datain files. Audio IFF conformstothe "EA IFF 85" standard. This document will describe those
portions of "EA IFF 85" that are germaneto Audio IFF. For amore complete discussion of "EA IFF
85", please refer to the document "EA IFF 85" Standard for Interchange Format Files.

An"EA IFF 85" fileismade up of anumber of chunksof data. Chunks are the building blocks of "EA
IFF 85" files. A chunk condsts of some header information followed by data:

ckiD
ckSize

} header info

A chunk can be represented using our C-like language in the following manner:

typedef struct {

I D ckl b /* chunk ID */

| ong ckSi ze; /* chunk Size */

char ckbData[]; /* data */
} Chunk;

ckiD describes the format of the data portion achunk. A program can determine how to interpret the
chunk data by examining ckiD.

ckSze isthe sze of the data portion of the chunk, in bytes. It does not include the 8 bytes used by
ckiD and ckSze.

ckData containsthe data stored in the chunk. The format of this datais determined by ckiD. If the
datais an odd number of bytesin length, a zero pad byte must be added at the end. The pad byteis not
incudedin ckSze .

Note that an array with no size pecification (eg. char ckDat a[] ;) indicates avarigble-Szed array in
our C-likelanguage. This differsfrom sandard C.

Apple Computer, Inc. January 4, 1989 4

Audio Interchange File Format: "AIFF" version 1.3

An Audio IFF fileisacallection of anumber of different types of chunks. Thereisa Common Chunk
which contains important parameters describing the sampled sound, such asit's length and samplerate.

Thereisa Sound Data Chunk that contains the actud audio samples. There are severa other optiona
chunksthat define markers, list instrument parameters, store application-specific information, etc. All of
these chunks are described in detail in later sections of this document.

The chunksin a Audio | FF file are grouped together in a container chunk. "EA IFF 85" definesa
number of container chunks, but the one used by Audio IFF iscalled aFORM. A FORM hasthe
following format:

typedef struct {

I D ckl

| ong ckSi ze;

ID f or niType;

char chunks [];
} Chunk;

ckiD isaways'FORM'. Thisindicates that thisisa FORM chunk.

ckSze containsthe size of data portion of the FORM' chunk. Note that the data portion has been
broken into two parts, formType and chunky].

formType describes what'sin the 'FORM' chunk. For Audio IFF files, formType isaways 'AlFF.
Thisindicates that the chunks within the FORM pertain to sampled sound. A FORM chunk of
formType 'AlIFF iscaled aFORM AIFF.

chunks are the chunks contained within the FORM. These chunks are cdled local chunks A FORM
AIFF dong with itsloca chunks make up an Audio IFFfile.

Hereisan example of asmple Audio IFFfile. It conggsof afile containing sngle FORM AIFF which
contains two locd chunks, a Common Chunk and a Sound Data Chunk.

Apple Computer, Inc. January 4, 1989 5

Audio Interchange File Format: "AIFF" version 1.3

FORM AIFF Chunk

ckiD ='FORM'
formType ="'AlIFF'

Common Chunk
ckID = 'COMM'

Sound Data Chunk
ckiD = 'SSND'

There are no redtrictions on the ordering of loca chunks within a FORM AlFF.

Onan Applell, the FORM AlFF isstored in a ProDOSfile. Thefile typeis 0xD8 and the aux typeis
0x0000. AIFF versons 1.2 and earlier used file type OXCB, whichisincorrect. Please seethe Applell
File Type Note for file type 0xD8 and aux type 0x0000 for strategies on dealing with this inconsstency.

On aMacintosh, the FORM AIFF is stored in the data fork of an Audio IFF file. The Macintosh file
type of an Audio IFFfileis'AIFF. Thisisthe same asthe formType of the FORM AIFF.

Apple Computer, Inc. January 4, 1989 6

Audio Interchange File Format: "AIFF" version 1.3

Macintosh or Apple Il gpplications should not store any information in Audio IFF file's resource fork, as
this information may not be preserved by dl applications. Applications can use the Application
Soecific Chunk, defined later in this document, to store extrainformation specific to their application.

On an operating system that uses file extensions, such as MS-DOS or UNI X, it is recommended that
Audio IFF file names have a" . AIF" extenson.

A more detailed example of an Audio IFF file can be found in Appendix A. Please refer to this example
as often as necessary while reading the remainder of this document.

Local Chunk Types

The formats of the different loca chunk types found within a FORM AlFF are described in the following
sections. The ckiDsfor each chunk are also defined.

There are two types of chunks, those that are required and those that are optional. The Common Chunk
isrequired. The Sound Data chunk is required if the sampled sound has grester than zero length. All
other chunks are optiond. All applications that use FORM AIFF must be able to read the required
chunks, and can choose to selectively ignore the optional chunks. A program that copies a FORM
AIFF should copy dl of the chunksin the FORM AlFF.

To insure that this stlandard remains usable by dl developers, only Apple Computer, Inc. should define

new chunk types for FORM AIFF. If you have suggestions for new chunk types, Appleis happy to
lisen! Pleaserefer to Appendix B for ingtructions on how to send commentsto Apple.

Common Chunk

The Common Chunk describes fundamentd parameters of the sampled sound.

#defi ne Commonl D ' COW /* ckl D for Common Chunk */

typedef struct {

I D ckl D

| ong ckSi ze;

short nuntChannel s;
unsi gned |l ong nunBanpl eFranes;
short sanpl eSi ze;

ext ended sanpl eRat e;

} CommonChunk;

Apple Computer, Inc. January 4, 1989 7

Audio Interchange File Format: "AIFF" version 1.3

ckiD isaways'COMM'. ckSize isthe Sze of the data portion of the chunk, in bytes. It does not
include the 8 bytes used by ckiD and ckSze. For the Common Chunk, ckSze is always 18.

numChannels contains the number of audio channels for the sound. A vaue of 1 means monophonic
sound, 2 means stereo, and 4 means four channel sound, etc. Any number of audio channels may be
represented.

The actua sound samples are stored in another chunk, the Sound Data Chunk, which will be described
shortly. For multichanne sounds, single sample points from each channd are interleaved. A set of
interleaved sample pointsis called asample frame. Thisisillustrated below for the stereo case.

sample sample sample
frame 0 framel frame N

Ichl|‘ch2|ch1|ch2| ¢ o o

I:I = one sample point

For monophonic sound, a sample frame is a single sample point.

For multichannd sounds, the following conventions should be observed:

channel
1 2 3 4 B 6
stereo left right
3 channel left right center
d front front rear rear

qua left right left right

4 channel left center right surround
left ; right

6 channel left center center right center surround

numSampleFrames contains the number of sample framesin the Sound Data Chunk. Note that
numSampleFrames isthe number of sample frames, not the number of bytes nor the number of sample
pointsin the Sound Data Chunk. The tota number of sample pointsin the file is numSampleFrames
times numChannels.

sampleSize isthe number of bitsin each sample point. It can be any number from 1 to 32. The format
of asample point will be described in the next section, the Sound Data Chunk.

sampleRate isthe sample rate at which the sound isto be played back, in sample frames per second.

Apple Computer, Inc. January 4, 1989 8

Audio Interchange File Format: "AIFF" version 1.3

One and only one Common Chunk is required in every FORM AIFF.

Apple Computer, Inc. January 4, 1989 9

Audio Interchange File Format: "AIFF" version 1.3

Sound Data Chunk

The Sound Data Chunk contains the actua sample frames.

#defi ne SoundDat al D ' SSND' [* ckl D for Sound Data Chunk */

typedef struct {

I D ckl D

| ong ckSi ze;

unsi gned | ong of f set;

unsi gned | ong bl ockSi ze;
unsi gned char soundDat a[] ;

} SoundDat aChunk;

ckiD isalways'SSND'. ckSze isthe sze of the data portion of the chunk, in bytes. It does not
include the 8 bytes used by ckiD and ckSze.

offset determines where the firsd sample frame in the soundData starts. offset isin bytes. Most
applications won't use offset and should st it to zero. Use for anon-zero offset isexplained in the
Block-Aligning Sound Data section below.

blockSze isused in conjunction with offset for block-aigning sound data. 1t containsthe Szein bytes
of the blocks that sound datais digned to. Aswith offset, most gpplications won't use blockS ze and
should st it to zero. Moreinformation on blockSze isin the Block-Aligning Sound Data section
below.

soundData contains the sample frames that make up the sound. The number of sample framesin the
soundData is determined by the numSampleFrames parameter in the Common Chunk.

Sample Points

Each sample point in asample frameisalinear, 2's complement value. The sample pointsare from 1 to
32 bits wide, as determined by the sampleSze parameter in the Common Chunk. Sample points are
stored in an integral number of contiguous bytes. One to 8 bit wide sample points are stored in one byte,
9 to 16 bit wide sample points are stored in two bytes, 17 to 24 bit wide sample points are stored in 3
bytes, and 25 to 32 bit wide samples are stored in 4 bytes. When the width of asample point isless
than amultiple of 8 bits, the sample point datais | eft judtified, with the remaining bits zeroed. An
example caeisillustrated below. A 12 bit sample point, binary 101000010111, is stored | eft justified
in two bytes. The remaining bits are st to zero.

Apple Computer, Inc. January 4, 1989 10

Audio Interchange File Format: "AIFF" version 1.3

I LI r 1 LIPS I LI LI I I
1 0100 OO T11I0 12 1 1 0 0 0 O
] Ll Ll Ll] Ll] 1

- > < >
12 bit sample point right most
is left justified 4 bits are

zero padded

Sample Frames

Sample frames are stored contiguoudy in order of increasing time. The sample pointswithin asample
frame are packed together, there are no unused bytes between them. Likewise, the sample frames are
packed together with no pad bytes.

Block-Aligning Sound Data
There may be some gpplications that, to insure redl time recording and playback of audio, wishto dign

sampled sound data with fixed-sze blocks. This can be accomplished with the offset and blockSze
parameters, as shown below.

soundDat a[]
unused sample frames unused
44— [ffset — 44— numSampleFrames sample frames —
bytes
<& blockSize bytes |
block N - 1 block N block N + 1 block N + 2

Block-digned sound data

In the above figure, the first sample frame Sarts at the beginning of block N. Thisis accomplished by
skipping the firg offset bytes of the soundData. Note too that the soundData array can extend beyond
vaid sample frames, dlowing the soundData array to end on a block boundary.

blockS ze specifies the Sze in bytes of the block that isto be digned to. A blockS ze of zero indicates
that the sound data does not need to be block-aigned. Applications that don't care about block
dignment should set blockS ze and offset to zero when writing Audio IFF files. Applications that write
block-aigned sound data should set blockS ze to the appropriate block size. Applications that modify
an exising Audio IFF file should try to preserve dignment of the sound data, dthough thisis not
required. If an application doesn't preserve dignment, it should set blockS ze and offset to zero. If an
application needs to realign sound data to a different sized block; it should update blockS ze and offset
accordingly.

The Sound Data Chunk is required unless the numSampl eFrames fidd in the Common Chunk is zero.
A maximum of one Sound Data Chunk can appear in aFORM AlFF.

Apple Computer, Inc. January 4, 1989 11

Audio Interchange File Format: "AIFF" version 1.3

Apple Computer, Inc. January 4, 1989 12

Audio Interchange File Format: "AIFF" version 1.3

Marker Chunk

The Marker Chunk contains markers that point to positionsin the sound data. Markers can be used for
whatever purposes an gpplication desires. The Instrument Chunk, defined later in this document, uses
markers to mark loop beginning and end poaints, for example.

Markers

A marker has the following format.

typedef short Mar ker | d;

typedef struct {

Mar ker | d id;

unsi gned | ong position;

pstring mar ker Nane;
} Marker;

id isanumber that uniquely identifies the marker within aFORM AIFF. Theid can be any postive
non-zero integer, aslong as no other marker within the same FORM AlFF has the sameid.

The marker's position in the sound dataiis determined by position . Markers conceptudly fal between
two sample frames. A marker that fals before the first sample frame in the sound datais a position
zero, while amarker that falls between the first and second sample framein the sound dataiis a position
1. Notethat the units for position are sample frames, not bytes nor sample points.

Sample Frames

i ¥ b

position 0 position 5 position 12

mar ker Name is a Pascd-tyle text string containing the name of the mark.

Note: Some "EA IFF 85" files store strings as C-gtrings (text bytes followed by anull terminating
character) instead of Pasca-style strings. Audio IFF usespst ri ngs because they are more efficiently
skipped over when scanning through chunks. Using pst ri ngs, aprogram can skip over astring by
adding the string count to the address of the first character. C strings require that each character in the
string be examined for the null terminator.

Apple Computer, Inc. January 4, 1989 13

Audio Interchange File Format: "AIFF" version 1.3

Marker Chunk Format

The format for the data within aMarker Chunk is shown below.

#defi ne Marker I D ' MARK' [* ckl D for Marker Chunk */

typedef struct {

I D ckl D

| ong ckSi ze;
unsi gned short numvar kers;
Mar ker Mar kers[];

} Mar ker Chunk;

ckiD isaways'MARK'. ckSze isthe sze of the data portion of the chunk, in bytes. It does not
include the 8 bytes used by ckiD and ckSze.

numMarkers isthe number of markersin the Marker Chunk.

numMarkers, if non-zero, it isfollowed by the markers themsdlves. Because dl fidldsin a marker are
an even number of bytesin length, the length of any marker will dways be even. Thus, markers are
packed together with no unused bytes between them. The markers need not be ordered in any
particular manner.

The Marker Chunk is optional. No more than one Marker Chunk can appear in aFORM AlFF.

Apple Computer, Inc. January 4, 1989 14

Audio Interchange File Format: "AIFF" version 1.3

Instrument Chunk

The Instrument Chunk defines basic parameters that an instrument, such as a sampler, could use to play
back the sound data.

Looping

Sound data can be looped, dlowing a portion of the sound to be repeated in order to lengthen the
sound. The structure below describes aloop:

typedef struct {

short pl ayMode;
Mar ker | d begi nLoop;
Mar ker | d endLoop;

} Loop;

A loop is marked with two points, a begin position and an end position. There are two waysto play a
loop, forward looping and forward/backward looping. In the case of forward looping, playback begins
at the beginning of the sound, continues past the begin position and continues to the end position, at
which point playback restarts again at the begin position. The segment between the begin and end
positions, caled the loop segment, is played over and over again, until interrupted by something, such
asthe rdease of akey on a sampling indrument, for example.

T I
sample frames loop segment
1 1 1 1 1

begin position end position

With forward/backward looping, the loop segment isfirst played from the begin position to the end
position, and then played backwards from the end position back to the begin postion. Thisflip-flop
pattern is repested over and over again until interrupted.

playMode specifies which type of looping isto be performed.

#def i ne NoLoopi ng 0
#def i ne For war dLoopi ng 1
#define For war dBackwar dLoopi ng 2

If NoLoopi ng isspecified, then the loop points are ignored during playback.
beginLoop isathe marker id that marks the begin position of the loop segment.
endLoop marks the end position of aloop. The begin position must be less than the end position. If

thisis not the case, thenthe loop segment has zero or negative length and no looping takes place.

Apple Computer, Inc. January 4, 1989 15

Audio Interchange File Format: "AIFF" version 1.3

Apple Computer, Inc. January 4, 1989 16

Audio Interchange File Format: "AIFF" version 1.3

I nstrument Chunk For mat

Theformat of the datawithin an Instrument Chunk is described below.

#defi ne Instrunent!| D "| NST' [* cklD for Instrunent Chunk */

typedef struct {

I D ckl

| ong ckSi ze;

char baseNot e;
char det une;

char | owNot e;
char hi ghNot e;
char | owVel ocity;
char hi ghVel oci ty;
short gai n;

Loop sust ai nLoop;
Loop rel easelLoop;

} I'nstrunment Chunk;

ckiD isaways'INST'. ckSze isthe sze of the data portion of the chunk, in bytes. For the Instrument
Chunk, ckSze isadways 20.

baseNote isthe note a which the instrument plays back the sound data without pitch modification.
Unitsare MIDI (MIDI isan acronym for Musica Instrument Digital Interface) note numbers, and arein
the range O through 127. Middle C is60.

detune determines how much the instrument should ater the pitch of the sound when it is played back.
Unitsarein cents (1/100 of a semitone) and range from -50 to +50. Negative numbers mean that the
pitch of the sound should be lowered, while positive numbers mean that it should be raised.

lowNote and highNote specify the suggested range on a keyboard for playback of the sound data.
The sound data should be played if the instrument is requested to play a note between the low and high
notes, inclusve. The base note does not have to be within this range. Units for lowNote and
highNote are MIDI note vaues.

lowVelocity and highVelocity specify the suggested range of velocities for playback of the sound data.
The sound data should be played if the note-on velocity isis between low and high velocity, indlusve.
Unitsare MIDI velocity vaues, 1 (lowest velocity) through 127 (highest velocity).

gain isthe amount by which to change the gain of the sound when it isplayed. Units are decibels. For
example, 0 db means no change, 6 db means double the value of each sample point, while -6 do means
have the value of each sample point.

sustainLoop specifies aloop that isto be played when an instrument is sustaining a sound.

Apple Computer, Inc. January 4, 1989 17

Audio Interchange File Format: "AIFF" version 1.3

releaselL.oop specifiesaloop that isto be played when an instrument is in the release phase of playing
back asound. The release phase usudly occurs after akey on an instrument is released.

The Instrument Chunk is optional. No more than one Instrument Chunk can appear in a FORM AlFF.

MIDI Data Chunk

The MIDI Data Chunk can be used to store MIDI data (please refer to Musical Instrument Digital
Interface Specification 1.0, available from the International MI1DI Association, for more details on
MIDI).

The primary purpose of this chunk isto store MIDI System Exclusive messages, athough other types of
MIDI data can be stored in thisblock aswell. Asmore instruments come on the market, they will likely
have parameters that have not been included in the Audio IFF specification. The MIDI System
Exclusve messages for these instruments may contain many parameters that are not included in the
Instrument Chunk. For example, a new sampling instrument may have more than the two loops defined
inthe Instrument Chunk. These loopswill likely be represented in the MIDI System Exclusive message
for the new machine. ThisMIDI System Exclusive message can be stored in the MIDI Data Chunk.

#defi ne MDI DatalD 'MDI' [/* cklD for MDI Data Chunk */

typedef struct {

I D ckl D
| ong ckSi ze;
unsi gned char M Dl dat a[] ;

} M DI Dat aChunk;

ckiD isdways'M DI '. ckSze isthe Sze of the data portion of the chunk, in bytes. 1t does not include
the 8 bytes used by ckiD and ckSize.

MIDIData containsastream of MIDI data.

The MIDI Data Chunk isoptiond. Any number of MIDI Data Chunks may exist inaFORM AIFF. If

MIDI System Exclusive messages for saverd instruments are to be stored in a FORM AIFF, it is better
to use one MIDI Data Chunk per instrument than one big MIDI Data Chunk for dl of the insruments.

Apple Computer, Inc. January 4, 1989 18

Audio Interchange File Format: "AIFF" version 1.3

Audio Recording Chunk

The Audio Recording Chunk contains information pertinent to audio recording devices.

#define Audi oRecordi ngl D ' AESD /* cklD for Audio Recording */
/* Chunk. */

typedef struct {

I D ckl D;
| ong ckSi ze;
unsi gned char AESChannel St at usDat a[24] ;

} Audi oRecor di ngChunk;

ckiD isadways'AESD'. ckSze isthe sze of the data portion of the chunk, in bytes. For the Audio

Recording Chunk, ckSize is dways 24.

The 24 bytes of AESChannel SatusData are specified in the AES Recommended Practice for
Digital Audio Engineering - Serial Transmission Format for Linearly Represented Digital Audio

Data, section 7.1, Channd Status Data. That document describes aformat for red-time digita
transmission of digital audio between audio devices. Thisinformation is duplicated in the Audio

Recording Chunk for convenience. Of genera interest would be bits 2, 3, and 4 of byte O, which

describe recording emphasis.

The Audio Recording Chunk is optional. No more than one Audio Recording Chunk may appear in a

FORM AIFF.

Apple Computer, Inc. January 4, 1989 19

Audio Interchange File Format: "AIFF" version 1.3

Application Specific Chunk

The Application Specific Chunk can be used for any purposes whatsoever by manufacturers of
goplications. For example, an application that edits sounds might want to use this chunk to store editor
date parameters such as magnification levels, last cursor position, and the like,

#defi ne ApplicationSpecificlD "'APPL' [* cklID for Application */
/* Specific Chunk. */

typedef struct {

I D ckl D;

| ong ckSi ze;

OSType applicationSi gnature;
char data[];

} ApplicationSpecificChunk;

ckiD isadways'APPL'. ckSze isthe size of the data portion of the chunk, in bytes. It does not include
the 8 bytes used by ckiD and ckSize.

applicationSgnature identifies a particular gpplication. For Macintosh gpplications, thiswill be the
application's four character signature. For Apple Il gpplications, applicationSgnature should dways
be' pdos' , or the hexadecima bytes Ox70646F73. If applicationSgnatureis' pdos' , the beginning
of the data area is defined to be a Pascal- 2yle string (a length byte followed by ASCII string bytes)
containing the name of the gpplication. Thisis necessary because Apple Il gpplications do not have a
four-byte sgnature as do Macintosh applications.

data isthe data pecific to the application.

The Application Specific Chunk isoptiond. Any number of Application Specific Chunks may exis ina
single FORM AIFF.

Apple Computer, Inc. January 4, 1989 20

Audio Interchange File Format: "AIFF" version 1.3

Comments Chunk

The Comments Chunk is used to store comments in the FORM AIFF. "EA IFF 85" has an Annotation
Chunk that can be used for comments, but the Comments Chunk has two features not found in the "EA
IFF 85" chunk. They are: 1) atimestamp for the comment; and 2) alink to amarker.

Comment

A comment consists of atime stamp, marker id, and atext count followed by text.

typedef struct {

unsi gned | ong ti meSt anp;
Mar ker 1 D mar ker ;
unsi gned short count ;
char t ext;

} Conment ;

timeStamp indicates when the comment was created. Units are the number of seconds since January 1,
1904. (Thistime convention isthe one used by the Macintosh. For procedures that manipulate the time
stamp, see The Operating System Ultilities chapter in Inside Macintosh, vol 11). For aroutine that will
convert thisto an Apple Il GSOS format time, please see Apple |1 File Type Note for filetype OxDS8,
aux type 0x0000.

A comment can be linked to amarker. This alows gpplications to store long descriptions of markers as
acomment. If the comment isreferring to amarker, then marker isthe ID of that marker. Otherwise,
marker is zero, indicating that this comment is not linked to amarker.

count isthe length of the text that makes up the comment. Thisisa 16 hit quantity, alowing much
longer comments than would be available with apst ri ng.

text contains the comment itself. Thistext must be padded with abyte a theend to insure that it isan
even number of bytesin length. This pad byte, if present, isnot included in count.

Comments Chunk Format

#defi ne Comment | D ' covr' /* ckl D for Comments Chunk. */

typedef struct {

I D ckl D;
| ong ckSi ze;
unsi gned short nunComrent s;

Apple Computer, Inc. January 4, 1989 21

Audio Interchange File Format: "AIFF" version 1.3

Comment coments[];

} Comment sChunk;

ckiD isdways' comr'. ckSze isthe sze of the data portion of the chunk, in bytes. It does not include
the 8 bytes used by ckiD and ckSze.

numComments contains the number of comments in the Comments Chunk. Thisisfollowed by the
comments themsalves. Comments are dway's an even number of bytesin length, so thereis no padding
between commentsin the Comments Chunk.

The Comments Chunk is optional. No more than one Comments Chunk may appear in asingle FORM
AIFF.

Apple Computer, Inc. January 4, 1989 22

Audio Interchange File Format: "AIFF" version 1.3

Text Chunks - Name, Author, Copyright, Annotation

These four chunks are included in the definition of every "EA IFF 85" file. All are text chunks; their data
portion congsts solely of text. Each of these chunksis optiondl.

#defi ne Namel D " NAVE' /* ckl D for Nanme Chunk. */
#defi ne Aut hor I D " AUTH [* ckl D for Author Chunk. */
#def i ne Copyrightl D "(c) ' /* cklI D for Copyright Chunk. */

#defi ne Annot ati onl D " ANNO /* ckl D for Annotation Chunk. */

typedef struct {

I D ckl b

| ong ckSi ze;

char text[];
} Text Chunk;

ckiD isether ' NAME', " AUTH, '(c¢) ', or ' ANND, depending on whether the chunk as a Name Chunk,
Author Chunk, Copyright Chunk, or Annotation Chunk, respectively. For the Copyright Chunk, the'c
is lowercase and there is a space (0x20) after the close parenthes's.

ckS ze isthe sze of the data portion of the chunk, in this case the text.

text contains pure ASCII characters. Itisnot apstring nor aC dring. The number of charactersin
text isdetermined by ckSize. The contents of text depend on the chunk, as described below:

Name Chunk

text contains the name of the sampled sound. The Name Chunk is optional. No more than one Name
Chunk may exist within a FORM AlFF.

Author Chunk

text contains one or more author names. An author in this case is the creator of a sampled sound. The
Author Chunk is optional. No more than one Author Chunk may exist within a FORM AlFF.

Copyright Chunk

The Copyright Chunk contains a copyright notice for the sound. text contains a date followed by the
copyright owner. Thechunk ID ‘(¢) ' serves asthe copyright characters'©'. For example, a
Copyright Chunk containing the text "1988 Apple Compuiter, Inc." means"© 1988 Apple Computer,
Inc."

The Copyright Chunk isoptional. No more than one Copyright Chunk may exist within a FORM AlFF.

Apple Computer, Inc. January 4, 1989 23

Audio Interchange File Format: "AIFF" version 1.3

Annotation Chunk

text containsacomment. Use of this chunk is discouraged within FORM AIFF. The more powerful
Comments Chunk should beusad ingead. The Annotation Chunk isoptiona. Many Annotation
Chunks may exigt within a FORM AIFF.

Chunk Precedence

Severd of thelocd chunks for FORM AlIFF may contain duplicate information. For example, the
Instrument Chunk defines loop points and MIDI system exclusive datain the MIDI Data Chunk may
aso define loop points. What happens if these loop points are different? How is an gpplication
supposed to loop the sound?

Such conflicts are resolved by defining a precedence for chunks:

Common Chunk Highest Precedence
Sound Dita Chunk
Marker Chunk
Instrument Chunk
Comment Chunk
Name Chunk
Author Chunk
Copyright Chunk
Annotation Chunk
Audio Recording Chunk

MIDI Data Chunk

Application Specific Chunk Lowest Precedence

The Common Chunk has the highest precedence, while the Application Specific Chunk has the
lowest. Information in the Common Chunk aways takes precedence over conflicting information in any
other chunk. The Application Specific Chunk aways losesin conflicts with other chunks. By looking

Apple Computer, Inc. January 4, 1989 24

Audio Interchange File Format: "AIFF" version 1.3

a the chunk hierarchy, for example, one sees that the loop pointsin the Instrument Chunk take
precedence over conflicting loop points found in the MIDI Data Chunk.

It isthe responghbility of gpplications that write data into the lower precedence chunks to make sure that
the higher precedence chunks are updated accordingly.

Apple Computer, Inc. January 4, 1989 25

Audio Interchange File Format: "AIFF" version 1.3

Appendix A - An Example

[llugtrated below is an example of aFORM AIFF. An Audio IFF fileis smply afile containing asingle

FORM AIFF. OnaMacintosh, the FORM AIFF is stored in the datafork of afile and thefiletypeis
‘AlFF.

FORM AIFF
ckiD ' FORM
ckSize 176516
formType " Al FF'
Common ckiD M
Chunk ckSize 18
numChannels| 2 |
numSampleFramep 88200
sampleSize 16 |
sampleRate 44100. 00
Marker ckiD l M;FEK
ckSize
Chunk numMarkers 2
id 1
position 44100
markerName g ['p' ["e [g [+ ['] ogl:glp[o]
id 2
position 88200
markerNamg 8 ['e' ['n'['d | « 1] "o |0 ['p | 0 |
ckiD "I NST'
Instrument ckSize 20
Chunk baseNote | 60
detune | -3
lowNote | 57
highNote | 63
lowVelocity | 1
highVelocity | 127
gain 6
sustainLoop.playMode 1
sustainLoop.beginLoop 1
sustainLoop.endLoog 2
releaseLoop.playMode 0
releaselLoop.beginLooq -
releaseLoop.endLoop -
Sound ckiD _SSND)
Data ckSize 176408
Chunk offset 0
blockSize 0
soundDatal _ch 1 | ch 2 eee ch1 | ch2 |
first sample frame 88200th sample frame

Apple Computer, Inc.

January 4, 1989 26

Audio Interchange File Format: "AIFF" version 1.3

Appendix B - Sending comments to Apple Computer, Inc.

If you have suggestions for new chunks to be added to the Audio Interchange File Format, please
describe the chunk in as much detall as possble, and give an example of itsuse. Suggestions for new
FORMSs, ways to group FORM AlFF'sinto abank, and new loca chunks are welcome. When sending
in suggestions, be sure to mention that your comment refers to the Audio Interchange File Format:
"AlIFF" document verson 1.3.

Send comments to:

Developer Technica Support
(Apple !l or Macintosh)

Apple Computer, Inc.

20525 Mariani Avenue, MS; 51-T
Cupertino, CA 95014 USA

Apple Computer, Inc. January 4, 1989 27

Audio Interchange File Format: "AIFF" version 1.3

References

AES Recommended Practice for Digital Audio Engineering - Serial Transmission Format for
Linearly Represented Digital Audio Data, Audio Engineering Society, 60 East 42nd Street, New
York, New York 10165

MIDI: Musical Instrument Digital Interface, Specification 1.0, the Internationad MIDI Association.
"EA IFF 85" Sandard for Interchange Format Files. Electronic Arts.

"8SvX" IFF 8-Bit Sampled Voice. Electronic Arts.

Inside Macintosh, Volume 1. Apple Compuiter, Inc., Addison Wedey Publishing Company, Inc.,
1986.

Apple® Numerics Manual, Addison Wedey Publishing Company, Inc., 1986.

Apple 1 File Type Note for File Type $D8, Aux Type $0000, Apple Computer, Inc., 1989.

Apple Computer, Inc. January 4, 1989 28

