
Audio Interchange File Format: "AIFF" version 1.3

Apple Computer, Inc. January 4, 1989 1

Audio Interchange File Format: "AIFF"

A Standard for Sampled Sound Files

Version 1.3
Apple Computer, Inc.

__

Modification History

Version 1.1 January 21, 1988 Original version.
Version 1.2 June 17, 1988 Corrected typographical error in illustration on
 page 4.
Version 1.3 January 4, 1989 Apple II modifications. Changed Apple II file
 type from 0xCB to 0xD8 on page 4. Defined
 convention for using applicationSignature field
 page 15.
__

The Audio Interchange File Format (Audio IFF) provides a standard for storing sampled sounds. The
format is quite flexible, allowing for the storage of monaural or multichannel sampled sounds at a variety
of sample rates and sample widths.

Audio IFF conforms to the "EA IFF 85" Standard for Interchange Format Files developed by
Electronic Arts.

Audio IFF is primarily an interchange format, although application designers should find it flexible
enough to use as a data storage format as well. If an application does choose to use a different storage
format, it should be able to convert to and from the format defined in this document. This will facilitate
the sharing of sound data between applications.

Audio IFF is the result of several meetings held with music developers over a period of ten months in
1987-88. Apple Computer greatly appreciates the comments and cooperation provided by all
developers who helped define this standard.

Another "EA IFF 85" sound storage format is"8SVX" IFF 8-bit Sampled Voice, by Electronic Arts.
"8SVX", which handles 8-bit monaural samples, is intended mainly for storing sound for playback on
personal computers. Audio IFF is intended for use with a larger variety of computers, sampled sound
instruments, sound software applications, and high fidelity recording devices.

Audio Interchange File Format: "AIFF" version 1.3

Apple Computer, Inc. January 4, 1989 2

Data types

A C-like language will be used to describe data structures in this document. The data types used are
listed below:

char: 8 bits, signed. A char can contain more than just ASCII characters. It can

contain any number from -128 to 127 (inclusive).
unsigned char: 8 bits, unsigned. Contains any number from zero to 255 (inclusive).
short: 16 bits, signed. Contains any number from -32,768 to 32,767 (inclusive).
unsigned short: 16 bits, unsigned. Contains any number from zero to 65,535 (inclusive).
long: 32 bits, signed. Contains any number from -2,147,483,648 to 2,147,483,647

(inclusive).
unsigned long: 32 bits, unsigned. Contains any number from zero to 4,294,967,295

(inclusive).
extended: 80 bit IEEE Standard 754 floating point number (Standard Apple Numeric

Environment [SANE] data type Extended).
pstring: Pascal-style string, a one byte count followed by text bytes. The total number

of bytes in this data type should be even. A pad byte can be added at the
end of the text to accomplish this. This pad byte is not reflected in the count.

ID: 32 bits, the concatenation of four printable ASCII character in the range ' '
(SP, 0x20) through '~' (0x7E). Spaces (0x20) cannot precede printing
characters; trailing spaces are allowed. Control characters are forbidden.

OSType: 32 bits. A concatenation of four characters, as defined in Inside Macintosh,
vol II.

Constants

Decimal values are referred to as a string of digits, for example 123, 0, 100 are all decimal numbers.
Hexadecimal values are preceded by a 0x - e.g. 0x0A12, 0x1, 0x64.

Data Organization

All data is stored in Motorola 68000 format. Data is organized as follows:

1234 0567
msb lsbchar

msb lsb
1234 056791112131415 10 8

short byte 0 byte 1

1234 0567
msb

lsb
long byte 0 byte 1

byte 2 byte 3

91112131415 10 8

Audio Interchange File Format: "AIFF" version 1.3

Apple Computer, Inc. January 4, 1989 3

Referring to Audio IFF

The official name for this standard is Audio Interchange File Format. If an application program needs
to present the name of this format to a user, such as in a "Save as…" dialog box, the name can be
abbreviated to Audio IFF.

Audio Interchange File Format: "AIFF" version 1.3

Apple Computer, Inc. January 4, 1989 4

File Structure

The "EA IFF 85" Standard for Interchange Format Files defines an overall structure for storing
data in files. Audio IFF conforms to the "EA IFF 85" standard. This document will describe those
portions of "EA IFF 85" that are germane to Audio IFF. For a more complete discussion of "EA IFF
85", please refer to the document "EA IFF 85" Standard for Interchange Format Files.

An "EA IFF 85" file is made up of a number of chunks of data. Chunks are the building blocks of "EA
IFF 85" files. A chunk consists of some header information followed by data:

A chunk.

ckID

ckSize

data

header info}

A chunk can be represented using our C-like language in the following manner:

typedef struct {

 ID ckID; /* chunk ID */
 long ckSize; /* chunk Size */

 char ckData[]; /* data */

} Chunk;

ckID describes the format of the data portion a chunk. A program can determine how to interpret the
chunk data by examining ckID.

ckSize is the size of the data portion of the chunk, in bytes. It does not include the 8 bytes used by
ckID and ckSize.

ckData contains the data stored in the chunk. The format of this data is determined by ckID. If the
data is an odd number of bytes in length, a zero pad byte must be added at the end. The pad byte is not
included in ckSize .

Note that an array with no size specification (e.g. char ckData[];) indicates a variable-sized array in
our C-like language. This differs from standard C.

Audio Interchange File Format: "AIFF" version 1.3

Apple Computer, Inc. January 4, 1989 5

An Audio IFF file is a collection of a number of different types of chunks. There is a Common Chunk
which contains important parameters describing the sampled sound, such as it's length and sample rate.
There is a Sound Data Chunk that contains the actual audio samples. There are several other optional
chunks that define markers, list instrument parameters, store application-specific information, etc. All of
these chunks are described in detail in later sections of this document.

The chunks in a Audio IFF file are grouped together in a container chunk. "EA IFF 85" defines a
number of container chunks, but the one used by Audio IFF is called a FORM. A FORM has the
following format:

typedef struct {

 ID ckID;
 long ckSize;

 ID formType;
 char chunks [];

} Chunk;

ckID is always 'FORM'. This indicates that this is a FORM chunk.

ckSize contains the size of data portion of the 'FORM' chunk. Note that the data portion has been
broken into two parts, formType and chunks[].

formType describes what's in the 'FORM' chunk. For Audio IFF files, formType is always 'AIFF'.
This indicates that the chunks within the FORM pertain to sampled sound. A FORM chunk of
formType 'AIFF' is called a FORM AIFF.

chunks are the chunks contained within the FORM. These chunks are called local chunks. A FORM
AIFF along with its local chunks make up an Audio IFF file.

Here is an example of a simple Audio IFF file. It consists of a file containing single FORM AIFF which
contains two local chunks, a Common Chunk and a Sound Data Chunk.

Audio Interchange File Format: "AIFF" version 1.3

Apple Computer, Inc. January 4, 1989 6

ckID = 'FORM'

ckID = 'COMM'
Common Chunk

ckID = 'SSND'
Sound Data Chunk

FORM AIFF Chunk

formType = 'AIFF'

There are no restrictions on the ordering of local chunks within a FORM AIFF.

On an Apple II, the FORM AIFF is stored in a ProDOS file. The file type is 0xD8 and the aux type is
0x0000. AIFF versions 1.2 and earlier used file type 0xCB, which is incorrect. Please see the Apple II
File Type Note for file type 0xD8 and aux type 0x0000 for strategies on dealing with this inconsistency.

On a Macintosh, the FORM AIFF is stored in the data fork of an Audio IFF file. The Macintosh file
type of an Audio IFF file is 'AIFF'. This is the same as the formType of the FORM AIFF.

Audio Interchange File Format: "AIFF" version 1.3

Apple Computer, Inc. January 4, 1989 7

Macintosh or Apple II applications should not store any information in Audio IFF file's resource fork, as
this information may not be preserved by all applications. Applications can use the Application
Specific Chunk, defined later in this document, to store extra information specific to their application.

On an operating system that uses file extensions, such as MS-DOS or UNIX, it is recommended that
Audio IFF file names have a ".AIF" extension.

A more detailed example of an Audio IFF file can be found in Appendix A. Please refer to this example
as often as necessary while reading the remainder of this document.

Local Chunk Types

The formats of the different local chunk types found within a FORM AIFF are described in the following
sections. The ckIDs for each chunk are also defined.

There are two types of chunks, those that are required and those that are optional. The Common Chunk
is required. The Sound Data chunk is required if the sampled sound has greater than zero length. All
other chunks are optional. All applications that use FORM AIFF must be able to read the required
chunks, and can choose to selectively ignore the optional chunks. A program that copies a FORM
AIFF should copy all of the chunks in the FORM AIFF.

To insure that this standard remains usable by all developers, only Apple Computer, Inc. should define
new chunk types for FORM AIFF. If you have suggestions for new chunk types, Apple is happy to
listen! Please refer to Appendix B for instructions on how to send comments to Apple.

Common Chunk

The Common Chunk describes fundamental parameters of the sampled sound.

#define CommonID 'COMM' /* ckID for Common Chunk */

typedef struct {

 ID ckID;
 long ckSize;

 short numChannels;
 unsigned long numSampleFrames;
 short sampleSize;
 extended sampleRate;

} CommonChunk;

Audio Interchange File Format: "AIFF" version 1.3

Apple Computer, Inc. January 4, 1989 8

ckID is always 'COMM'. ckSize is the size of the data portion of the chunk, in bytes. It does not
include the 8 bytes used by ckID and ckSize. For the Common Chunk, ckSize is always 18.

numChannels contains the number of audio channels for the sound. A value of 1 means monophonic
sound, 2 means stereo, and 4 means four channel sound, etc. Any number of audio channels may be
represented.

The actual sound samples are stored in another chunk, the Sound Data Chunk, which will be described
shortly. For multichannel sounds, single sample points from each channel are interleaved. A set of
interleaved sample points is called a sample frame. This is illustrated below for the stereo case.

frame 0 frame 1 frame N

•• •ch 1 ch 2 ch 1 ch 2 ch 1 ch 2

 = one sample point

sample sample sample

For monophonic sound, a sample frame is a single sample point.

For multichannel sounds, the following conventions should be observed:

stereo

3 channel

4 channel

6 channel

channel

left right

left right center

center right surround

center right

1 2 3 4 5 6

left left right
centercenter surround

left

quad
front front rear rear
left leftright right

numSampleFrames contains the number of sample frames in the Sound Data Chunk. Note that
numSampleFrames is the number of sample frames, not the number of bytes nor the number of sample
points in the Sound Data Chunk. The total number of sample points in the file is numSampleFrames
times numChannels.

sampleSize is the number of bits in each sample point. It can be any number from 1 to 32. The format
of a sample point will be described in the next section, the Sound Data Chunk.

sampleRate is the sample rate at which the sound is to be played back, in sample frames per second.

Audio Interchange File Format: "AIFF" version 1.3

Apple Computer, Inc. January 4, 1989 9

One and only one Common Chunk is required in every FORM AIFF.

Audio Interchange File Format: "AIFF" version 1.3

Apple Computer, Inc. January 4, 1989 10

Sound Data Chunk

The Sound Data Chunk contains the actual sample frames.

#define SoundDataID 'SSND' /* ckID for Sound Data Chunk */

typedef struct {

 ID ckID;
 long ckSize;

 unsigned long offset;
 unsigned long blockSize;
 unsigned char soundData[];

} SoundDataChunk;

ckID is always 'SSND'. ckSize is the size of the data portion of the chunk, in bytes. It does not
include the 8 bytes used by ckID and ckSize.

offset determines where the first sample frame in the soundData starts. offset is in bytes. Most
applications won't use offset and should set it to zero. Use for a non-zero offset is explained in the
Block-Aligning Sound Data section below.

blockSize is used in conjunction with offset for block-aligning sound data. It contains the size in bytes
of the blocks that sound data is aligned to. As with offset, most applications won't use blockSize and
should set it to zero. More information on blockSize is in the Block-Aligning Sound Data section
below.

soundData contains the sample frames that make up the sound. The number of sample frames in the
soundData is determined by the numSampleFrames parameter in the Common Chunk.

Sample Points

Each sample point in a sample frame is a linear, 2's complement value. The sample points are from 1 to
32 bits wide, as determined by the sampleSize parameter in the Common Chunk. Sample points are
stored in an integral number of contiguous bytes. One to 8 bit wide sample points are stored in one byte,
9 to 16 bit wide sample points are stored in two bytes, 17 to 24 bit wide sample points are stored in 3
bytes, and 25 to 32 bit wide samples are stored in 4 bytes. When the width of a sample point is less
than a multiple of 8 bits, the sample point data is left justified, with the remaining bits zeroed. An
example case is illustrated below. A 12 bit sample point, binary 101000010111, is stored left justified
in two bytes. The remaining bits are set to zero.

Audio Interchange File Format: "AIFF" version 1.3

Apple Computer, Inc. January 4, 1989 11

12 bit sample point
is left justified 4 bits are

zero padded

right most

01 0 1 0 0 0 0 1 0 1 1 1 0 0 0

Sample Frames

Sample frames are stored contiguously in order of increasing time. The sample points within a sample
frame are packed together, there are no unused bytes between them. Likewise, the sample frames are
packed together with no pad bytes.

Block-Aligning Sound Data

There may be some applications that, to insure real time recording and playback of audio, wish to align
sampled sound data with fixed-size blocks. This can be accomplished with the offset and blockSize
parameters, as shown below.

Block-aligned sound data

numSampleFrames sample frames

block N - 1 block N block N + 1 block N + 2

unusedunused sample frames

offset
bytes

soundData[]

blockSize bytes

In the above figure, the first sample frame starts at the beginning of block N. This is accomplished by
skipping the first offset bytes of the soundData. Note too that the soundData array can extend beyond
valid sample frames, allowing the soundData array to end on a block boundary.

blockSize specifies the size in bytes of the block that is to be aligned to. A blockSize of zero indicates
that the sound data does not need to be block-aligned. Applications that don't care about block
alignment should set blockSize and offset to zero when writing Audio IFF files. Applications that write
block-aligned sound data should set blockSize to the appropriate block size. Applications that modify
an existing Audio IFF file should try to preserve alignment of the sound data, although this is not
required. If an application doesn't preserve alignment, it should set blockSize and offset to zero. If an
application needs to realign sound data to a different sized block, it should update blockSize and offset
accordingly.

The Sound Data Chunk is required unless the numSampleFrames field in the Common Chunk is zero.
A maximum of one Sound Data Chunk can appear in a FORM AIFF.

Audio Interchange File Format: "AIFF" version 1.3

Apple Computer, Inc. January 4, 1989 12

Audio Interchange File Format: "AIFF" version 1.3

Apple Computer, Inc. January 4, 1989 13

Marker Chunk

The Marker Chunk contains markers that point to positions in the sound data. Markers can be used for
whatever purposes an application desires. The Instrument Chunk, defined later in this document, uses
markers to mark loop beginning and end points, for example.

Markers

A marker has the following format.

typedef short MarkerId;

typedef struct {

 MarkerId id;
 unsigned long position;
 pstring markerName;

} Marker;

id is a number that uniquely identifies the marker within a FORM AIFF. The id can be any positive
non-zero integer, as long as no other marker within the same FORM AIFF has the same id.

The marker's position in the sound data is determined by position . Markers conceptually fall between
two sample frames. A marker that falls before the first sample frame in the sound data is at position
zero, while a marker that falls between the first and second sample frame in the sound data is at position
1. Note that the units for position are sample frames, not bytes nor sample points.

position 0 position 5 position 12

Sample Frames

markerName is a Pascal-style text string containing the name of the mark.

Note: Some "EA IFF 85" files store strings as C-strings (text bytes followed by a null terminating
character) instead of Pascal-style strings. Audio IFF uses pstrings because they are more efficiently
skipped over when scanning through chunks. Using pstrings, a program can skip over a string by
adding the string count to the address of the first character. C strings require that each character in the
string be examined for the null terminator.

Audio Interchange File Format: "AIFF" version 1.3

Apple Computer, Inc. January 4, 1989 14

Marker Chunk Format

The format for the data within a Marker Chunk is shown below.

#define MarkerID 'MARK' /* ckID for Marker Chunk */

typedef struct {

 ID ckID;
 long ckSize;

 unsigned short numMarkers;
 Marker Markers[];

} MarkerChunk;

ckID is always 'MARK'. ckSize is the size of the data portion of the chunk, in bytes. It does not
include the 8 bytes used by ckID and ckSize.

numMarkers is the number of markers in the Marker Chunk.

numMarkers, if non-zero, it is followed by the markers themselves. Because all fields in a marker are
an even number of bytes in length, the length of any marker will always be even. Thus, markers are
packed together with no unused bytes between them. The markers need not be ordered in any
particular manner.

The Marker Chunk is optional. No more than one Marker Chunk can appear in a FORM AIFF.

Audio Interchange File Format: "AIFF" version 1.3

Apple Computer, Inc. January 4, 1989 15

Instrument Chunk

The Instrument Chunk defines basic parameters that an instrument, such as a sampler, could use to play
back the sound data.

Looping

Sound data can be looped, allowing a portion of the sound to be repeated in order to lengthen the
sound. The structure below describes a loop:

typedef struct {

 short playMode;
 MarkerId beginLoop;
 MarkerId endLoop;

} Loop;

A loop is marked with two points, a begin position and an end position. There are two ways to play a
loop, forward looping and forward/backward looping. In the case of forward looping, playback begins
at the beginning of the sound, continues past the begin position and continues to the end position, at
which point playback restarts again at the begin position. The segment between the begin and end
positions, called the loop segment, is played over and over again, until interrupted by something, such
as the release of a key on a sampling instrument, for example.

begin position end position

sample frames loop segment

With forward/backward looping, the loop segment is first played from the begin position to the end
position, and then played backwards from the end position back to the begin position. This flip-flop
pattern is repeated over and over again until interrupted.

playMode specifies which type of looping is to be performed.

#define NoLooping 0
#define ForwardLooping 1
#define ForwardBackwardLooping 2

If NoLooping is specified, then the loop points are ignored during playback.

beginLoop is a the marker id that marks the begin position of the loop segment.

endLoop marks the end position of a loop. The begin position must be less than the end position. If
this is not the case, then the loop segment has zero or negative length and no looping takes place.

Audio Interchange File Format: "AIFF" version 1.3

Apple Computer, Inc. January 4, 1989 16

Audio Interchange File Format: "AIFF" version 1.3

Apple Computer, Inc. January 4, 1989 17

Instrument Chunk Format

The format of the data within an Instrument Chunk is described below.

#define InstrumentID 'INST' /* ckID for Instrument Chunk */

typedef struct {

 ID ckID;
 long ckSize;

 char baseNote;
 char detune;
 char lowNote;
 char highNote;
 char lowVelocity;
 char highVelocity;
 short gain;
 Loop sustainLoop;
 Loop releaseLoop;

} InstrumentChunk;

ckID is always 'INST'. ckSize is the size of the data portion of the chunk, in bytes. For the Instrument
Chunk, ckSize is always 20.

baseNote is the note at which the instrument plays back the sound data without pitch modification.
Units are MIDI (MIDI is an acronym for Musical Instrument Digital Interface) note numbers, and are in
the range 0 through 127. Middle C is 60.

detune determines how much the instrument should alter the pitch of the sound when it is played back.
Units are in cents (1/100 of a semitone) and range from -50 to +50. Negative numbers mean that the
pitch of the sound should be lowered, while positive numbers mean that it should be raised.

lowNote and highNote specify the suggested range on a keyboard for playback of the sound data.
The sound data should be played if the instrument is requested to play a note between the low and high
notes, inclusive. The base note does not have to be within this range. Units for lowNote and
highNote are MIDI note values.

lowVelocity and highVelocity specify the suggested range of velocities for playback of the sound data.
The sound data should be played if the note-on velocity is is between low and high velocity, inclusive.
Units are MIDI velocity values, 1 (lowest velocity) through 127 (highest velocity).

gain is the amount by which to change the gain of the sound when it is played. Units are decibels. For
example, 0 db means no change, 6 db means double the value of each sample point, while -6 db means
halve the value of each sample point.

sustainLoop specifies a loop that is to be played when an instrument is sustaining a sound.

Audio Interchange File Format: "AIFF" version 1.3

Apple Computer, Inc. January 4, 1989 18

releaseLoop specifies a loop that is to be played when an instrument is in the release phase of playing
back a sound. The release phase usually occurs after a key on an instrument is released.

The Instrument Chunk is optional. No more than one Instrument Chunk can appear in a FORM AIFF.

MIDI Data Chunk

The MIDI Data Chunk can be used to store MIDI data (please refer to Musical Instrument Digital
Interface Specification 1.0, available from the International MIDI Association, for more details on
MIDI).

The primary purpose of this chunk is to store MIDI System Exclusive messages, although other types of
MIDI data can be stored in this block as well. As more instruments come on the market, they will likely
have parameters that have not been included in the Audio IFF specification. The MIDI System
Exclusive messages for these instruments may contain many parameters that are not included in the
Instrument Chunk. For example, a new sampling instrument may have more than the two loops defined
in the Instrument Chunk. These loops will likely be represented in the MIDI System Exclusive message
for the new machine. This MIDI System Exclusive message can be stored in the MIDI Data Chunk.

#define MIDIDataID 'MIDI' /* ckID for MIDI Data Chunk */

typedef struct {

 ID ckID;
 long ckSize;

 unsigned char MIDIdata[];

} MIDIDataChunk;

ckID is always ' MIDI'. ckSize is the size of the data portion of the chunk, in bytes. It does not include
the 8 bytes used by ckID and ckSize.

MIDIData contains a stream of MIDI data.

The MIDI Data Chunk is optional. Any number of MIDI Data Chunks may exist in a FORM AIFF. If
MIDI System Exclusive messages for several instruments are to be stored in a FORM AIFF, it is better
to use one MIDI Data Chunk per instrument than one big MIDI Data Chunk for all of the instruments.

Audio Interchange File Format: "AIFF" version 1.3

Apple Computer, Inc. January 4, 1989 19

Audio Recording Chunk

The Audio Recording Chunk contains information pertinent to audio recording devices.

#define AudioRecordingID 'AESD' /* ckID for Audio Recording */
 /* Chunk. */

typedef struct {

 ID ckID;
 long ckSize;

 unsigned char AESChannelStatusData[24];

} AudioRecordingChunk;

ckID is always 'AESD'. ckSize is the size of the data portion of the chunk, in bytes. For the Audio
Recording Chunk, ckSize is always 24.

The 24 bytes of AESChannelStatusData are specified in the AES Recommended Practice for
Digital Audio Engineering - Serial Transmission Format for Linearly Represented Digital Audio
Data, section 7.1, Channel Status Data. That document describes a format for real-time digital
transmission of digital audio between audio devices. This information is duplicated in the Audio
Recording Chunk for convenience. Of general interest would be bits 2, 3, and 4 of byte 0, which
describe recording emphasis.

The Audio Recording Chunk is optional. No more than one Audio Recording Chunk may appear in a
FORM AIFF.

Audio Interchange File Format: "AIFF" version 1.3

Apple Computer, Inc. January 4, 1989 20

Application Specific Chunk

The Application Specific Chunk can be used for any purposes whatsoever by manufacturers of
applications. For example, an application that edits sounds might want to use this chunk to store editor
state parameters such as magnification levels, last cursor position, and the like.

#define ApplicationSpecificID 'APPL' /* ckID for Application */
 /* Specific Chunk. */

typedef struct {

 ID ckID;
 long ckSize;

 OSType applicationSignature;
 char data[];

} ApplicationSpecificChunk;

ckID is always 'APPL'. ckSize is the size of the data portion of the chunk, in bytes. It does not include
the 8 bytes used by ckID and ckSize.

applicationSignature identifies a particular application. For Macintosh applications, this will be the
application's four character signature. For Apple II applications, applicationSignature should always
be 'pdos', or the hexadecimal bytes 0x70646F73. If applicationSignature is 'pdos', the beginning
of the data area is defined to be a Pascal-style string (a length byte followed by ASCII string bytes)
containing the name of the application. This is necessary because Apple II applications do not have a
four-byte signature as do Macintosh applications.

data is the data specific to the application.

The Application Specific Chunk is optional. Any number of Application Specific Chunks may exist in a
single FORM AIFF.

Audio Interchange File Format: "AIFF" version 1.3

Apple Computer, Inc. January 4, 1989 21

Comments Chunk

The Comments Chunk is used to store comments in the FORM AIFF. "EA IFF 85" has an Annotation
Chunk that can be used for comments, but the Comments Chunk has two features not found in the "EA
IFF 85" chunk. They are: 1) a timestamp for the comment; and 2) a link to a marker.

Comment

A comment consists of a time stamp, marker id, and a text count followed by text.

typedef struct {

 unsigned long timeStamp;
 MarkerID marker;
 unsigned short count;
 char text;

} Comment;

timeStamp indicates when the comment was created. Units are the number of seconds since January 1,
1904. (This time convention is the one used by the Macintosh. For procedures that manipulate the time
stamp, see The Operating System Utilities chapter in Inside Macintosh, vol II). For a routine that will
convert this to an Apple II GS/OS format time, please see Apple II File Type Note for filetype 0xD8,
aux type 0x0000.

A comment can be linked to a marker. This allows applications to store long descriptions of markers as
a comment. If the comment is referring to a marker, then marker is the ID of that marker. Otherwise,
marker is zero, indicating that this comment is not linked to a marker.

count is the length of the text that makes up the comment. This is a 16 bit quantity, allowing much
longer comments than would be available with a pstring.

text contains the comment itself. This text must be padded with a byte at the end to insure that it is an
even number of bytes in length. This pad byte, if present, is not included in count.

Comments Chunk Format

#define CommentID 'COMT' /* ckID for Comments Chunk. */

typedef struct {

 ID ckID;
 long ckSize;

 unsigned short numComments;

Audio Interchange File Format: "AIFF" version 1.3

Apple Computer, Inc. January 4, 1989 22

 Comment comments[];

} CommentsChunk;

ckID is always ' COMT'. ckSize is the size of the data portion of the chunk, in bytes. It does not include
the 8 bytes used by ckID and ckSize.

numComments contains the number of comments in the Comments Chunk. This is followed by the
comments themselves. Comments are always an even number of bytes in length, so there is no padding
between comments in the Comments Chunk.

The Comments Chunk is optional. No more than one Comments Chunk may appear in a single FORM
AIFF.

Audio Interchange File Format: "AIFF" version 1.3

Apple Computer, Inc. January 4, 1989 23

Text Chunks - Name, Author, Copyright, Annotation

These four chunks are included in the definition of every "EA IFF 85" file. All are text chunks; their data
portion consists solely of text. Each of these chunks is optional.

#define NameID 'NAME' /* ckID for Name Chunk. */
#define AuthorID 'AUTH' /* ckID for Author Chunk. */
#define CopyrightID '(c) ' /* ckID for Copyright Chunk. */
#define AnnotationID 'ANNO' /* ckID for Annotation Chunk. */

typedef struct {

 ID ckID;
 long ckSize;

 char text[];

} TextChunk;

ckID is either ' NAME', ' AUTH', '(c) ', or ' ANNO', depending on whether the chunk as a Name Chunk,
Author Chunk, Copyright Chunk, or Annotation Chunk, respectively. For the Copyright Chunk, the 'c'
is lowercase and there is a space (0x20) after the close parenthesis.

ckSize is the size of the data portion of the chunk, in this case the text.

text contains pure ASCII characters. It is not a pstring nor a C string. The number of characters in
text is determined by ckSize. The contents of text depend on the chunk, as described below:

Name Chunk

text contains the name of the sampled sound. The Name Chunk is optional. No more than one Name
Chunk may exist within a FORM AIFF.

Author Chunk

text contains one or more author names. An author in this case is the creator of a sampled sound. The
Author Chunk is optional. No more than one Author Chunk may exist within a FORM AIFF.

Copyright Chunk

The Copyright Chunk contains a copyright notice for the sound. text contains a date followed by the
copyright owner. The chunk ID '(c) ' serves as the copyright characters '©'. For example, a
Copyright Chunk containing the text "1988 Apple Computer, Inc." means "© 1988 Apple Computer,
Inc."

The Copyright Chunk is optional. No more than one Copyright Chunk may exist within a FORM AIFF.

Audio Interchange File Format: "AIFF" version 1.3

Apple Computer, Inc. January 4, 1989 24

Annotation Chunk

text contains a comment. Use of this chunk is discouraged within FORM AIFF. The more powerful
Comments Chunk should be used instead. The Annotation Chunk is optional. Many Annotation
Chunks may exist within a FORM AIFF.

Chunk Precedence

Several of the local chunks for FORM AIFF may contain duplicate information. For example, the
Instrument Chunk defines loop points and MIDI system exclusive data in the MIDI Data Chunk may
also define loop points. What happens if these loop points are different? How is an application
supposed to loop the sound?

Such conflicts are resolved by defining a precedence for chunks:

Common Chunk

Sound Data Chunk

Marker Chunk

Instrument Chunk

Highest Precedence

Lowest PrecedenceApplication Specific Chunk

MIDI Data Chunk

Audio Recording Chunk

Comment Chunk

Name Chunk

Author Chunk

Copyright Chunk

Annotation Chunk

The Common Chunk has the highest precedence, while the Application Specific Chunk has the
lowest. Information in the Common Chunk always takes precedence over conflicting information in any
other chunk. The Application Specific Chunk always loses in conflicts with other chunks. By looking

Audio Interchange File Format: "AIFF" version 1.3

Apple Computer, Inc. January 4, 1989 25

at the chunk hierarchy, for example, one sees that the loop points in the Instrument Chunk take
precedence over conflicting loop points found in the MIDI Data Chunk.

It is the responsibility of applications that write data into the lower precedence chunks to make sure that
the higher precedence chunks are updated accordingly.

Audio Interchange File Format: "AIFF" version 1.3

Apple Computer, Inc. January 4, 1989 26

Appendix A - An Example

Illustrated below is an example of a FORM AIFF. An Audio IFF file is simply a file containing a single
FORM AIFF. On a Macintosh, the FORM AIFF is stored in the data fork of a file and the file type is
'AIFF'.

FORM AIFF

Common
Chunk

Marker
Chunk

Instrument
Chunk

Sound
Data
Chunk

numSampleFrames

numMarkers

position
markerName

id
position

markerName

id

8 'e' 'n' 'd' ' ' 'l' 'o' 'o' 'p' 0

2
88200

2

8 'b' 'e' 'g' ' ' 'l' 'o' 'o' 'p' 0

1
44100

numChannels

sampleSize
sampleRate

2
88200

16
44100.00

ckID
ckSize

'COMM'
18

ckID
ckSize

'MARK'
34

ckID
ckSize

'INST'
20

releaseLoop.playMode
releaseLoop.beginLoop

sustainLoop.playMode
sustainLoop.beginLoop

releaseLoop.endLoop

sustainLoop.endLoop

baseNote
detune

lowNote
highNote

lowVelocity
highVelocity

gain

0

1

60
-3
57
63
1

127
6

1
2

-
-

ckID
ckSize

'SSND'
176408

ckID
ckSize

formType

'FORM'

'AIFF'
176516

soundData • • •

first sample frame 88200th sample frame

ch 1 ch 2 ch 1 ch 2

offset
blockSize

0
0

Audio Interchange File Format: "AIFF" version 1.3

Apple Computer, Inc. January 4, 1989 27

Appendix B - Sending comments to Apple Computer, Inc.

If you have suggestions for new chunks to be added to the Audio Interchange File Format, please
describe the chunk in as much detail as possible, and give an example of its use. Suggestions for new
FORMs, ways to group FORM AIFF's into a bank, and new local chunks are welcome. When sending
in suggestions, be sure to mention that your comment refers to the Audio Interchange File Format:
"AIFF" document version 1.3.

Send comments to:

Developer Technical Support
(Apple II or Macintosh)
Apple Computer, Inc.
20525 Mariani Avenue, MS: 51-T
Cupertino, CA 95014 USA

Audio Interchange File Format: "AIFF" version 1.3

Apple Computer, Inc. January 4, 1989 28

References

AES Recommended Practice for Digital Audio Engineering - Serial Transmission Format for
Linearly Represented Digital Audio Data, Audio Engineering Society, 60 East 42nd Street, New
York, New York 10165

MIDI: Musical Instrument Digital Interface, Specification 1.0, the International MIDI Association.

"EA IFF 85" Standard for Interchange Format Files. Electronic Arts.

"8SVX" IFF 8-Bit Sampled Voice. Electronic Arts.

Inside Macintosh, Volume II. Apple Computer, Inc., Addison Wesley Publishing Company, Inc.,
1986.

Apple® Numerics Manual, Addison Wesley Publishing Company, Inc., 1986.

Apple II File Type Note for File Type $D8, Aux Type $0000, Apple Computer, Inc., 1989.

